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Hall Effect on Unsteady Hartmann Flow with Heat Transfer Under
Exponential Decaying Pressure Gradient

Hazem A. Attia*
Department of Mathematics, College of Science, Al-Qasseem University,
P.O. Box 237, Buraidah 81999, KSA

The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid

bounded by two parallel non-conducting porous plates is studied with heat transfer taking the

Hall effect into consideration. An external uniform magnetic field and a uniform suction and

injection are applied perpendicular to the plates while the fluid motion is subjected to an

exponential decaying pressure gradient. The two plates are kept at different but constant

temperatures while the Joule and viscous dissipations are included in the energy equation. The

effect of the ion slip and the uniform suction and injection on both the velocity and temperature

distributions is examined.

1. Introduction

The magnetohydrodynamic flow between two
parallel plates, known as Hartmann flow, is a
classical problem that has many applications in
magnetohydrodynamic (MHD) power generators,
MHD pumps, accelerators, aerodynamic heating,
electrostatic precipitation, polymer technology,
petroleum industry, purification of crude oil and
fluid droplets and sprays. Hartmann and Lazarus
(1937) studied the influence of a transverse uni-
form magnetic field on the flow of a conducting
fluid between two infinite parallel, stationary, and
insulated plates. Then, a lot of research work
concerning the Hartmann flow has been obtained
under different physical effects (Tao, 1960 ; Alpher,
1961 ; Sutton and Sherman, 1965 ; Cramer and
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Pai, 1973 ; Nigam and Singh, 1960 ; Tani, 1962 ;
Soundalgekar et al., 1979; Soundalgekar and
Uplekar, 1986 ; Abo-El-Dahab, 1993). In most
cases the Hall and ion slip terms were ignored in
applying Ohm’s law as they have no marked effect
for small and moderate values of the magnetic
field. However, the current trend for the applica-
tion of magnetohydrodynamics is towards a strong
magnetic field, so that the influence of electro-
magnetic force is noticeable (Cramer and Pai,
1973). Under these conditions, the Hall current
and ion slip are important and they have a mar-
ked effect on the magnitude and direction of the
current density and consequently on the magnetic
force term. Tani (1962) studied the Hall effect
on the steady motion of electrically conducting
and viscous fluids in channels. Soudalgekar et al.
(1979 ; Soundalgekar and Uplekar, 1986) studied
the effect of the Hall currents on the steady MHD
Couette flow with heat transfer. The temperatures
of the two plates were assumed either to be con-
stant (Soudalgekar et al.,, 1979) or to vary lin-
early along the plates in the direction of the flow
(Soundalgekar and Uplekar, 1986) . Abo-El-Dahab
(1993) studied the effect of Hall current on the
steady Hartmann flow subjected to a uniform
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suction and injection at the bounding plates. Later,
Attia (1998) extended the problem to the un-
steady state with heat transfer, with constant pres-
sure gradient applied.

In the present study, the unsteady flow and heat
transfer of an incompressible, viscous, electrically
conducting fluid between two infinite non-con-
ducting horizontal porous plates are studied with
the consideration of the Hall current. The fluid
is acted upon by an exponential decaying pres-
sure gradient, a uniform suction and injection and
a uniform magnetic field perpendicular to the
plates. The equations of motion are solved analy-
tically using the Laplace transform method while
the energy equation is solved numerically taking
the Joule and the viscous dissipations into consi-
deration. The effect of the magnetic field, the Hall
current, the ion slip, and the suction and injection
on both the velocity and temperature distributions
is studied.

2. Description of the Problem

The two non-conducting plates are located at
the y= =/ planes and extend from x=—00 to ©©
and z=—00 to oo as shown in Fig. 1. The lower
and upper plates are kept at the two constant
temperatures 77 and 75, respectively, where 75>
T1. The fluid flows between the two plates under
the influence of an exponential decaying pressure
gradient dP/dx in the x-direction, and a uni-
form suction from above and injection from be-
low which are applied at #=0. The whole system
is subjected to a uniform magnetic field B, in
the positive y-direction. This is the total magnetic
field acting on the fluid since the induced mag-
netic field is neglected (Sutton and Sherman,
1965 ; Cramer and Pai, 1973). From the geometry
of the problem, it is evident that all quantities
apart from the pressure gradient dP/dx do no
not depend upon x or 2. The existence of the Hall
term gives rise to a z-component of the velocity.
This configuration is a good approximation of
some practical situations such as heat exchangers,
flow meters, and pipes that connect system com-
ponents. The cooling of these devices can be
achieved by utilizing a porous surface through
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Fig. 1 Schematic diagram of the problem

which a coolant, either a liquid or gas, is forced.
Therefore, the results obtained here are impor-
tant for the design of the wall and the cooling
arrangements of these devices. Thus, the velocity
vector of the fluid is

5y, )=uly, t)itvij+w(v, t), &

with the initial and boundary conditions %=
w=0 at <0, and #=w=0 at for # >0. The tem-
perature 7 (y, ¢) at any point in the fluid satisfies
both the initial and boundary conditions T=73
at <0, T=7T; at y=4+h, and T=7T, at y=
—h for ¢>0. The fluid flow is governed by the
momentum equation

0BV =N~V P+ N B, (1)
where o and p are, respectively, the density and
the coefficient of viscosity of the fluid. If the Hall

term is retained, the current density fis given by
Jo{oABo—B(TABo)}
where ¢ is the electric conductivity of the fluid,

and @ is the Hall factor (Sutton and Sherman,
1965) . This equation may be solved in J to yield

7.5 ___ 0B}
14+ m?

((ut+mw) i+ (w—mu) k) (2)

where m=08B,, is the Hall parameter (Sutton
and Sherman, 1965). Thus, in terms of Eq. (2),
the two components of Eq. (1) read
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ou ou dP 8 u 0B}

05t oy = gt g T ) ()
ow ow Fw 0B
7ot tovoTs oy * oy: 1+ z(w—mu) (4

To find the temperature distribution inside the
fluid we use the energy equation (Schlichting, 1968)

pc 88? +pcv, %5 k %Zy{ +#{<%)2+<%}ﬂ 5
-I-fTij(uzﬁ-wz)

where ¢ and £k are, respectively, the specific heat
capacity and the thermal conductivity of the fluid.
The second and third terms on the right-hand
side represent the viscous and Joule dissipations,
respectively.

The problem is simplified by writing the equa-
tions in the non-dimensional form. The charac-
teristic length is taken to be %, and the charac-
teristic time is ©#4?//2 while the characteristic
velocity is z/ oh. We define the following non-
dimensional quantities

p=2 5= s_2% pH_ ohu @:Phw
n’ y n’ ’ u u
s Pol? t
P= , 1=
2 ol

S=pvoh/ i is the suction parameter,
Pr=pc/k is the Prandtl number,

=2/ 0*ch*(T>— Ty) is the Eckert number,
Ha*=0B2%h?/ it where Ha is the Hartmann num-
ber,

In terms of the above non-dimensional vari-
ables and parameters, the basic Eqs. (3)-(5) are
written as (the “hats” will be dropped for conve-

nience)
ou _dP | Fu  H&
S oy = gy T ) (6)
ow ow_w__Ha ,
ot TSy T o gm0
oT 1 T u\?, [ ow\?
ot +S 8y “Pr 0y* K 3y> +<W>} (8)
+ EcHd’ (24 u?)
1+m?

The initial and boundary conditions for the ve-
locity become

u=w=0, t<0, y=w=0, y==x1, t>0 (9)

and the initial and boundary conditions for the
temperature are given by

t<01T=0, >0 T=1, y=+1, &
T=0, y=—1

3. Analytical Solution of the
Equations of Motion

Equations (6) and (7) are the two equations of
motion which, if solved, give the two components
of the velocity field as functions of space and
time. Multiplying Eq. (7) by 7 and adding to Eq.
(6) we obtain

>’V S 0V Hd*(1—im)

oV _dP
3 I 4 (11)

1+ m? ot dx

with the initial and boundary conditions
V=0, t<0, V=0, y==%1, >0 (12)

where V=u+i{w. Equations (11) and (12) can
be solved using the method of Laplace Transform
(LT) (Spiegel, 1986) to obtain V as functions of
y and t. The real part of Vor V, represents the
x-component of the velocity while the imaginary

part represents the z-component. Taking LT of

Egs. (11) and (12) we have
d*V(y,s) g dV(y,s)
dy* dy (13)
—K(s) V(y, s)=—F(s)
where V(y, s)=L(V(y, t)), —F(s) is the LT

of the pressure gradient, K (s) =A+s, and A=
Ha*(1—im)/(14+wm?). The solution of Eq. (13)
with y as an independent variable is given as

70,9 =T (1 exp(sy/2 {Sinh(‘:ﬁzﬁh(” )
cosh(S/2) cosh(gy) D
cosh(q)

S?/4+ K. Using the complex inversion
formula and the residue theorem (Spiegel, 1986),

where ¢®=
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the inverse transform of V (y, s), is determined

as
Vi, =C 3 (o (exp(PNust) —exp(—at)
-I-%(eXp(PNzxt) —exp(—at)) »
-I-%(exp(PNaxt) —exp(—at))
+%(exr>(PN4xt) —exp(—at) )>
where

—%Z C exp(—at)

PNy=PN,=NN,/2
PN;=PN,=NN,/2

Pl=4}pw
PE= 7} P,
PE= L R,
Ph=4

NNi=—7n%(n—1)*—S%/4
NNo=—7%(n—0.5)2—S?%/4

NN;=27(—1)"(n—1)exp(Sy/2)
sinh(S/2)sin(z(n—1) y)

NN,=27(—1)""(%—0.5)exp(Sy/2)
cos (S/2) cos(w(n—0.5)y)

The expression for the complex velocity V' is to
be evaluated for different values of the para-
meters Ha, m and S. The velocity components %
and w are, respectively, the real and imaginary
parts of V.

4. Numerical Solution
of the Energy Equation

The exact solution of the equations of motion,
given by Eq. (13), determines the velocity field

for different values of the parameters Ha, m and
S. The values of the velocity components, when
substituted in the right-hand side of the inhomo-
geneous energy equation (8), make it too difficult
to solve analytically. The energy equation is to be
solved numerically with the initial and boundary
conditions given by Eq. (10) using finite differ-
ences (Ames, 1977). The Crank-Nicolson impli-
cit method is applied. The finite difference equa-
tions are written at the mid-point of the com-
putational cell and the different terms are replac-
ed by their second-order central difference ap-
proximations in the y-direction. The diffusion
term is replaced by the average of the central dif-
ferences at two successive time levels. The viscous
and Joule dissipation terms are evaluated using
the velocity components and their derivatives in
the y-direction which are obtained from the exact
solution. Finally, the block tri-diagonal system is
solved using Thomas’ algorithm.

5. Results and Discussion

Figure 2 shows the profiles of the velocity com-
ponents # and w and temperature 7 for various
values of time ¢. The figure is plotted for Ha=1,
m=3 and S=1. As shown in Fig. 2(a) and 2(b),
the profiles of % and w are asymmetric about
the plane y=0 because of the suction. It is ob-
served that the velocity components and tempera-
ture reaches the steady state monotonically with
time.

Figure 3 shows the time evolution of % and
w at the centre of the channel y=0 for various
values of the Hall parameter . In this figure,
Ha=1 and S=0. It is clear from Fig. 3(a) that
increasing the parameter 72 increases #. This is
because the effective conductivity (¢/(14+m?)) de-
creases with increasing m which reduces the mag-
netic damping force on #%. In Fig. 3(b), the ve-
locity component w increases with increasing the
parameter 7 slightly (=0 to 1), since increas-
ing m increases the driving force term (mHa*u/
(1+m?) in Eq.(7) which pumps the flow in
the z-direction. However, increasing » more de-
creases the effective conductivity that results in
a reduced driving force and then, decreases w.
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Table 1 Time variation of the temperature at y=0 for various values m (S=0, Ha=1)

T t=02 | t=04 | t=06 t=0.8 t t=12 t=14 | t=16 t=1.8 t=2
m=0 | 0.1159 | 0.2675 | 0.3617 | 0.4187 | 0.4529 | 0.4730 | 0.4848 | 0.4916 | 0.4955 | 0.4976
m=1| 0.1158 | 0.2669 | 0.3610 | 0.4182 | 0.4526 | 0.4729 | 0.4849 | 0.4917 | 0.4956 | 0.4978
m=3| 0.1156 | 0.2664 | 0.3602 | 0.4175 | 0.4521 0.4727 | 0.4848 | 0.4918 | 0.4957 | 0.4979
0.4
0.3
s 02
0.1
0a
0 1 2 3 4
y t

—o—1=0.5 —a—t=1 ——t=2

—o—1t=05 a—t=1 a—t=2

(b)

y

—o—t=05 a—t=1 —a—t=2

(c)
Fig. 2 Time development of the profile of: (a) % ;
(b) w;and (¢) T (Ha=1, m=3and S=1)

Table 1 presents the time evolution of the tem-
perature 7T at the centre of the channel y=0 for
various values of the Hall parameter m. It is
clear from Table 1 that, for small #, increasing
m decreases T as increasing m reduces the effect
of the Joule dissipation. However, for large f,

(b)
Fig. 3 Effect of s on the time variation of : (a) x at
y=0; (b) w at y=0 (Ha=1 and S=0)

increasing 2 increases 1 since increasing m in-
creases the main flow velocity z which develops
with time and therefore increases the dissipa-
tions.

Figure 4 shows the time evolution of #z and w
at the centre of the channel y=0 for various val-
ues of the Hartmann number Hg. In this figure,
m=3 and S=0. Figure 4(a) indicates that in-
creasing Ha decreases u as a result of increasing
the damping force on z. Figure 4(b) shows that
increasing Ha increases w since it increases the
damping force on w. However, increasing Ha
more increases w at small f but decreases it at
large £. This can be attributed to the fact that
large Ha decreases the main velocity #, which
increases with time, and reduces the driving force
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Table 2 Time variation of the temperature T at y=0 for various values Ha (S=0, m=3)

T t=0.2 t=0.4 t=0.6 t=0.8 t t=12 t=14 t=1.6 t=1.8 T=2
Ha=1| 0.1156 0.2664 0.3602 0.4175 0.4521 0.4727 0.4848 0.4918 0.4957 0.4979
Ha=2| 0.1157 0.2668 0.3608 0.4179 0.4523 0.4726 0.4845 0.4914 0.4953 0.4975
Ha=3| 0.1159 0.2673 0.3612 0.4178 0.4516 0.4716 0.4834 0.4903 0.4944 0.4968

0.4 0.4
0.3 0.3
s 0.2 s 02
0.1 01
0n 0n
0 1 2 3 4 0 1 2 3 4

t

—e—Ha=1 —s—Ha=2 ——Ha=3

—+—Ha=1 —a—Ha=2 ——Ha=3

(b)
Fig. 4 Effect of Ha on the time variation of : (a)
at y=0; (b) w at y=0 (m=3 and S=0)

on w which results in decreasing w at large f.
Table 2 presents the time evolution of T at the
centre of the channel y=0 for various values of
the Hartmann number Ha. It is clear that for
small £, increasing Ha increases 7 due to in-
creasing the Joule dissipation. But, for large ¢,
increasing Ha decreases T as a result of decreas-
ing the velocities % and w and consequently de-
creases the viscous and Joule dissipations.
Figure 5 presents the time evolution of %, w
and 7 at the centre of the channel y=0 for var-
ious values of the suction parameter S. In this
figure Ha=1 and m=3. Figures 5(a) and 5(b)
show that increasing the suction decreases both
u and w due to the convection of the fluid from
regions in the lower half to the centre which has

t

——5=0 8—5=1 ——S5=2

—+—5=0 —.8—S5=1 ——S5=2

(c)
Fig. 5 Effect of m on the time variation of : (a)  at
y=0; (b) w at y=0; and (c) T at y=0
(Ha=1 and m=3)

higher fluid speed. Figure 5(c) shows that in-
creasing S decreases the temperature at the centre
of the channel. This is due to the influence f
convection in pumping the fluid from the cold
lower half towards the centre of the channel.
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6. Conclusions

The unsteady Hartmann flow of a conducting
fluid under the influence of an applied uniform
magnetic field has been studied considering the
Hall effect in the presence of uniform suction and
injection and an exponential decaying pressure
gradient. An analytical solution was obtained for
the momentum equations while the energy equa-
tion including the viscous and Joule dissipations
was solved numerically. Introducing the Hall
term gives rise to a velocity component w in the
z-direction and it affected the main velocity # in
the x-direction. The effect of the magnetic field,
the Hall parameter and the suction and injection
velocity on the velocity and temperature distri-
butions has been investigated. As time develops,
increasing the Hall parameter s increases the
velocity component # and increases the velocity
component w for small m and decreases it for
large m. Also, it is found that the effect of large
Ha on w depends on time. It is found also, that
the influence of both parameters Ha and m on
the temperature 7" depends on time.

References

Abo-El-Dahab, E. M. H., 1993, M. Sc. Thesis,

Helwan University, Egypt.

Alpher, R. A., 1961, Int. J. Heat and Mass
Transfer. 3, 108.

Ames, W.F., 1977, Numerical Solutions of
Partial Differential Equations, 2nd ed., Academic
Press, New York.

Attia, H. A., 1998, Can. J. Phys. 76(9), 739.

Cramer, K. and Pai, S. -1., 1973, Magnetofluid
Dynamics for Engineers and Applied Physicists,
McGraw-Hill Book Co.

Hartmann, J. and Lazarus, F., 1937, Kgl
Danske Videnskab. Selskab, Mat.-Fys. Medd, 15
(6,7).

Nigam, S. D. and Singh, S. N., 1960, Quart. J.
Mech. Appl. Math. 13, 85.

Schlichting, H., 1968, Boundary Layer Theory,
McGraw-Hill Book Co.

Soundalgekar, V.M., Vighnesam, N.V. and
Takhar, H. S., 1979, IEEE Trans. Plasma Sci. PS-
7(3), 178.

Soundalgekar, V. M. and Uplekar, A. G., 1986,
IEEE Trans. Plasma Sci. PS-14(5), 579.

Spiegel, M. R., 1986, Theory and Problems of
Laplace Transform, McGraw-Hill Book Co.

Sutton, G. W. and Sherman, A., 1965, Engi-
neering Magnetohydrodynamics, McGraw-Hill
Book Co..

Tani, 1., 1962, J. of Aerospace Sci. 29, 287.

Tao, I. N., 1960, J. of Aerospace Sci. 27, 334.



	Hall Effect on Unsteady Hartmann Flow with Heat Transfer Under Exponential Decaying Pressure Gradient
	영어 초록
	1. Introduction
	2. Description of the Problem
	3. Analytical Solution of the Equations of Motion
	4. Numerical Solution of the Energy Equation
	5. Results and Discussion
	6. Conclusions
	References


